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Figure 1: Our method extents to a wide range of dynamics including secondary motion on composite rigid bodies (e.g. plant leaves), stretch
and squash on elastic bodies (cow, rubber duck), jiggling of soft bodies (fat tissues), global secondary motion (vibrating elephant), and cloth
animation.

Abstract
We present a framework to integrate secondary motion into the existing animation pipelines. Skinning provides fast computation
for real-time animation and intuitive control over the deformation. Despite the benefits, traditional skinning methods lack
secondary dynamics such as the jiggling of fat tissues. We address the rigidity of skinning methods by physically simulating the
deformation handles with spring forces. Most studies introduce secondary motion into skinning by employing FEM simulation
on volumetric mesh vertices, coupling their computational complexity with mesh resolution. Unlike these approaches, we
do not require any volumetric mesh input. Our method scales to higher mesh resolutions by directly simulating deformation
handles. The simulated handles, namely the spring bones, enrich rigid skinning deformation with a diverse range of secondary
animation for subjects including rigid bodies, elastic bodies, soft tissues, and cloth simulation. In essence, we leverage the
benefits of physical simulations in the scope of deformation handles to achieve controllable real-time dynamics on a wide
range of subjects while remaining compatible with existing skinning pipelines. Our method avoids tetrahedral remeshing and
it is significantly faster compared to FEM-based volumetric mesh simulations.

CCS Concepts
• Computing methodologies → Animation; Physical simulation;

1. Introduction

Rigid bodies in nature often exhibit oscillatory motion, referred to
as secondary dynamics, arising as a response to initial primary mo-
tion. Soft bodies also have a similar motion as they jiggle under
force. Despite being widely used in animation, skinning methods

remain too stiff to exhibit such dynamics on both soft and rigid
bodies. To emulate dynamic deformation, researchers have been
developing physical simulation techniques. The lack of realism in
skinning methods has been compensated by physically simulating
the material through mesh vertices; however, incorporating physics
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into mesh deformation might involve complex implementations.
Additionally, many physical deformation schemes are dependent
on the mesh resolution. Tetrahedral meshes are also commonly re-
quired for FEM simulations as in [HMT∗12, IKNDP16, ARF15,
ZZCB21, CGC∗02, HTC∗13, RF14, MZS∗11, KB18, KBB∗17]. As
a result, these approaches significantly increase the computational
costs for finer resolution. Another drawback is that controlling the
results of physical simulation is limited; hence, physical simula-
tion deformation methods remain mostly unintuitive compared to
skinning.

Introducing plausible dynamic effects while preserving the pri-
mary intuition behind skinning remains an open area of research.
Spring Decomposed Skinning (SDS) tackles this problem by intro-
ducing physics in the scope of skinning bones. With this approach,
SDS combines fast computation and intuitive user control advan-
tages of skinning with the plausible dynamics of physical simula-
tions.

We use spring forces to simulate dynamic motion in skeletal
bones, referred to as spring bones. These forces are modeled using
Hookean springs due to their sinusoidal behavior (for the jiggling
secondary motion) and computational efficiency. However, despite
their simplicity, Hookean springs can suffer from numerical insta-
bility, caused by a time-stepping scheme, particularly under large
time steps [WB01]. In addition, they are only conditionally sta-
ble and require carefully chosen initial parameters [MHTG05]. To
address these stability issues, we adopt a Position-Based Dynam-
ics (PBD) framework [MHHR07] and we further impose kinematic
constraints to ensure intuitive skeletal movement.

Our method takes an articulated character animation as input,
including a rest-pose mesh, its rig, and keyframes of the rig, and
allows the user to specify which bones should be simulated as
spring bones. Optionally, we utilize helper bones as an addition
to the primary skeleton, allowing the user to localize the dynamics
on smaller surfaces. With this pipeline, we introduce dynamics on
existing animation, introducing a small overhead to the traditional
skinning pipeline. Our method is simple yet capable of capturing a
diverse range of dynamic motion. Skinning at its heart is a decom-
position of complex surface deformation to a limited set of bone
transformations. Following this intuition, we decompose dynamic
mesh surface deformation into a linear combination of spring mo-
tions. We also provide the source code at https://github.com/
bartuakyurek/Spring-Decomposed-Skinning.

1.1. Contributions

Spring bones are dynamic as their motion depends on the current
time and configuration. On the other hand, the existing geometric
skinning methods remain static as they require additional manual
keyframe input to produce the same motion. Despite the additional
keyframes, our computed dynamics can be quite cumbersome to
replicate with manual labor. In essence, our method provides a con-
trollable physical simulation scheme through rigging.

Unlike common approaches, our framework does not require
volumetric mesh input or anatomical primitives. As a result, SDS
is highly compatible with existing animation pipelines. Volumet-
ric mesh simulations are generally dependent on the mesh resolu-

tion. In contrast, our framework scales to higher mesh resolutions
by limiting the physical simulations to rig handles, providing fast
computation of dynamic motion.

The main contributions of our proposed framework Spring De-
composed Skinning are as follows:

• Provide artistic control over physical simulations through defor-
mation handles. These handles achieve both global and local
secondary motion over diverse subjects including rigid bodies,
soft tissues, and cloth surfaces.

• Decompose dynamic surface deformation into a linear combi-
nation of simple spring oscillations, which aligns with the core
intuition behind skinning.

• Achieve real-time dynamic deformation on a broad range of 3D
models without requiring computationally complex tetrahedral-
ization.

• A method to compute Inverse Kinematics-like transformations
of the dynamically posed skeleton bones.

• An easy-to-integrate framework into existing animation
pipelines, compatible with traditional skinning input and output.

• Formalize a framework around the "jiggle bones" construct,
closing the gap between industry applications and academic re-
search.

2. Related Work

Skinning Decomposition is a term introduced in [KSO10] to find
bone transformations and bone-vertex binding weights from exam-
ple poses. [LD12] decomposes a set of example poses into rigid
transformations. Even though this study is not focused on example-
based decomposition, we are still interested in decomposing dy-
namic poses into a set of bone transformations.

Geometric skinning approaches such as LBS commonly suffer
from rigidity in character motion and commonly lack dynamic ef-
fects such as jiggling, swaying, muscle bulging, or elastic deforma-
tions [RF16, WLP∗17, Muk15]. Researchers have been developing
solutions to bring more life into skinning frameworks and increase
the expressiveness of animations.

Blendshapes deformation studied in various studies such as
[KBB∗17], [LMR∗23], [MWF∗12], is useful when the expres-
siveness of skinning methods falls short, e.g. for facial expres-
sions where the surface is highly complex. In addition to skinning
pipelines, our framework can be also integrated with blendshapes
deformation.

Anatomical models, including [KBB∗17, LST09, RRC∗18,
AS07], utilize the underlying anatomy of bones and muscles to en-
able highly realistic deformation. However, these methods are com-
plex to implement and sophisticated anatomical knowledge might
not be available for a given mesh.

Example-based methods are employed in numerous studies
such as [SZT∗08, MG03, Muk15] to introduce realistic dynam-
ics. A significant number of papers such as [ZZCB21, MMRH22,
YWM∗21, SGOC20, CO18, PMRMB15, JHG∗22] also extend the
example based approach by making use of neural networks. Several
studies including [SGX∗21, SGXT20, BRPMB17], utilize motion
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capture technology. Despite their plausible dynamic results, mo-
tion capture technology remains an expensive solution. In addition,
the scope of example-based approaches is limited to the dataset and
it is another challenge to generalize the dynamics. In contrast, our
framework proposes a general framework that can be applied to
versatile subjects without additional dataset costs.

FEM-based methods such as [CBC∗05, CGC∗02, HMT∗12]
employ physical simulation to compute dynamic motion occurring
under external forces such as wind, gravity, and collisions. Many
papers, including [HMT∗12,IKNDP16,ARF15,ZZCB21,CGC∗02,
HTC∗13, RF14, MZS∗11, KB18, KBB∗17, TRPO21], incorporates
FEM simulation into skinning pipeline through a volumetric tetra-
hedral mesh. Despite the achieved dynamic effects, tetrahedraliza-
tion is computationally expensive and is not trivial for some geom-
etry. Time complexity is also a bottleneck especially for the higher
mesh resolutions, making high-resolution tetrahedral FEM not suit-
able for real-time applications. In this work, we avoid complex
tetrahedralization to achieve both scalable and controllable dynam-
ics.

Complementary Dynamics [ZBLJ20, BZC∗23] introduce sec-
ondary motion that does not undo the deformation produced by
the geometric methods. To this end, an orthogonality constraint
between the rigid motion and the computed secondary motion is
injected. Similarly, several papers have also utilized an orthog-
onality constraint for dynamic deformation as in [CBC∗05] and
[WU23]. [TRPO21] represents soft-tissue dynamics as deviations
from parametrized skeleton motion. A limitation of complemen-
tary dynamics is that they do not fully cover the range of secondary
motion, particularly when objects exhibit additional jiggling in the
same direction as their primary motion. Shaking a plant pot (Figure
9) results in jiggling in both complementary and primary spaces. In
this sense our secondary animation can be utilized to both produce
complementary motion and to exaggerate the primary motion; we
call them local and global dynamics respectively.

Mass-spring systems are used in rope, cloth and garment
animation [LBOK13], hair [SLF08], and soft tissue simulation
[Gol18], and mesh unfolding [SK16]. Several works [NT98,
LST09, KHS01, TT93, MHYH17] utilize mass-spring networks on
muscular anatomy or in between muscle and skin tissues for real-
istic deformations. [KB18] uses spring constraints on tetrahedral
edges for a physics-based character skinning, while [LTW95] uses
layered mass-spring networks to simulate soft tissues for realis-
tic facial expressions. [JHG∗22] augments a quasistatic neural net-
work with analytically integrated zero-restlength springs to capture
dynamic deformation, especially for human soft tissue dynamics.
Other methods include [vFTS07], which defines a limited number
of mass-spring sets to achieve elastic deformations, and [WLP∗17],
which uses mass-spring networks to deform 2D illustrations. Al-
though not directly a mass-spring system, [DJBDT10] proposes
physically simulated dynamic curves with mass and stiffness pa-
rameters for jiggling 2D animation. In [TN19], Toothman and Neff
introduce the notion of spring rigs by adding helper rigs between
primary rig and mesh vertices. In their work, Toothman and Neff
statically correct skinning artifacts in post-processing via spring
forces. In contrast, we utilize spring rigs for dynamic motion in
skeletal subspace.

Helper bones are utilized in [CM24, Muk15, MK16, Muk18,
MG03] to emulate nonlinear deformation such as muscle bulging
and tissue jiggling, that are not achievable by an intuitive rig. In-
spired by these studies, we utilize helper bones to widen the range
of dynamics we achieve. As an extension to helper bones studies
focusing on helper bones individually, we allow chains of helper
bones to achieve local soft tissue jiggling and cloth dynamics. We
also show that helper bones are not only useful for tissue deforma-
tions but also for a wider range of dynamics.

Rig-level physics methods provide a deformation framework
driven by rig parameters. One of the pioneering works that han-
dles physical forces on rig-level is Velocity Skinning by Rohmer et
al. [RTK∗21]. In Velocity Skinning, the bones are associated with
an additional set of weights based on their velocities, to be used
in the underlying skinning pipeline. These extra weights allow dy-
namic floppy and squashy deformation. [GBFP11] also combines
the accuracy of physical deformation with skinning handles. Build-
ing on Velocity Skinning, [SRKZ24] injects a time-varying signal
into skinning space to capture oscillatory secondary motion. This
signal, modeled as a damped sinusoidal, effectively represents a
single one-dimensional spring. In our approach, we directly sim-
ulate skinning bones as a spring that enables chains of springs to
produce more complex secondary motion. Another study unify-
ing physics with skinning deformation was recently conducted by
Wu and Umetani [WU23] on 2D triangulated surfaces or 3D tetra-
hedral meshes. Our method is also driven by the rig parameters,
unifying physical simulation with skinning pipelines. SDS distin-
guishes itself by directly simulating the bones, providing artistic
control over the physical deformation simply through the skeleton.
Physics-based deformation has also been shown to be useful for
surface reconstruction purposes [YS09, SY10, BL21].

Several works with volumetric mesh simulations also
parametrize skeletal motion in their physical deformation
pipeline. [CGC∗02] utilize a coarse volumetric mesh to introduce
elastic deformation driven by skeletal animation. In [HTC∗13], rig
parameters are used as degrees of freedom in physical simulations
on a volumetric mesh. Similarly, in Rig-Space Physics [HMT∗12],
the rig parameters determine the stiffness parameters of the un-
derlying FEM-based elastic deformation, augmenting the physical
simulation with skeletal animation. As a disadvantage, these
frameworks might require extra cumbersome weight painting and
texture mapping work to convert an existing animated model into a
volumetric input. Our method avoids such remeshing steps and can
readily be used to add dynamics to an existing animated character.

Jiggle bones are known in the industry to some extent, with
one of the most recent uses of jiggle bones is by the game God
of War Ragnarök where the developers have used helper bones to
produce tissue jiggling and muscle bulge by the help of anatomic
heuristics [Wan23]. However, to the best of our knowledge jiggle
bones are not directly introduced in skinning literature although
similar works such as [MK16] exist. In this work, we propose a
basic framework of spring bones skinning to leverage both the re-
alism of physical simulations and the speed of traditional skinning,
which has been a gap between industry applications and academic
research. Albeit simple, the method is effective and popular, and
has a positive impact on game development.
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3. Method

Given a rigged model and its animation keyframes, Spring Decom-
posed Skinning (SDS) defines a simple framework to simulate the
rig bones. Initially, the user selects specific rig bones to be treated as
spring bones. These bones include primary bones and helper bones.
After an initial configuration, our method automatically computes
the dynamic bone locations throughout the animation sequence.

Primary bones are typically part of the original rig that drive the
main motion, such as the arms and legs of a human skeleton. In
contrast, helper bones are auxiliary bones introduced by the user,
intended to localize secondary motion to smaller regions, typically
used for soft tissue dynamics. As a rule of thumb, primary bones are
converted to spring bones when global secondary motion is desired,
i.e. oscillations resulting from the rig’s main motion. Helper spring
bones, on the other hand, are added when local secondary motion
is needed, such as to simulate the jiggling of belly fat.

We define a spring bone with a spring attached to two masses lo-
cated at both tips of the bone as in Figure 2. The first mass, namely
fixed mass, is located at the bone head and its position remains
unchanged throughout the mass-spring simulation. Only kinematic
constraints and user-defined keyframes update these fixed mass lo-
cations. The second mass, namely free mass, is placed at the bone
tail and the simulation updates its position dynamically at every
frame.

Spring rest length can be adjusted by the user via positioning
the fixed mass along the bone, from bone head to tail. At its ex-
treme, both the fixed mass and free mass are located at the bone
tail, creating a point spring bone. Converting primary bones into
point spring bones enables squash and stretch deformations, where
secondary motion enhances the expressiveness of primary motion
as in Figure 15.

We introduce the notion of fixed and free masses to emulate
skeletal dynamics in a way that aligns with the intuition of skeletal
animation. Unlike classical mass-spring networks, where all par-
ticles are updated during simulation, we maintain the hierarchical
structure of a skeleton by fixing the first mass of each spring. This
fixed mass preserves its orientation relative to its parent and is not
updated during the mass-spring simulation. Instead, its position is
driven by rigid skinning transformations and kinematic constraints,
which are discussed in the following sections. This design pre-
serves the parent-child relationship of skeletal trees, where each
bone (except the root) is oriented relative to its parent.

At each frame, we simulate the free masses and update the rig
bone orientations accordingly. Let B0 : {B0

i } be the set of bone ori-
entations B0

i ∈ R2×3 in the rest pose, including locations of bone
head and tail. Similarly, let BR and BD be the set of rigid and dy-
namic bone orientations respectively. Rigid bone transformations
computed by forward kinematics MR : B0→ BR maps the rest pose
to the rigid pose. Based on the initial settings and the rig pose at a
given frame, our framework dynamically updates the rig pose and
computes the dynamic bone transformations MD : BR → BD to be
used in the underlying skinning method.

Figure 2: Placement of a mass-spring system along a skeletal bone.
The fixed mass is driven by rigid animation keyframes, while the
free mass is updated via dynamic simulation at each timestep. The
spring rest length is determined by the fixed mass position; trans-
lating the fixed mass along the bone axis reduces the rest length. In
the extreme configuration, both the fixed and free masses are po-
sitioned at the bone’s tail, connected via a zero rest length spring,
which forms a point spring bone.

3.1. Simulation

We simulate spring bones as simple Hookean springs with a Po-
sition Based Dynamics (PBD) framework [MHHR07]. Initially,
the user determines system parameters including spring stiffness
ks ∈ R, damping kd ∈ R, and mass m ∈ R to be used in mass-
spring simulation. For each particle pi, the initial position xi is set
according to the rest pose, and the initial velocity is set to v0

i = 0.
For PBD algorithm, we also store the inverse masses as wi = 1/mi.

At each frame, all masses are first displaced by forward kinemat-
ics as in traditional skinning pipelines. Then, our mass-spring sim-
ulator updates free mass positions based on Hookean spring forces
and mass velocities (steps 3-4 in Figure 5).

Let p1,p2 ∈ R3 be the particle positions attached to both ends
of a spring, v1,v2 ∈ R3 their velocities respectively, and l0 be the
spring rest length. We have the spring vector p1,2 = p2− p1 and

normalized spring vector n =
p1,2

∥p1,2∥
. Hookean spring force fs and

damping force fd acting on p1 is given by:

fs = ks(
∥∥p1,2

∥∥− l0)n (1) fd =−kd [n · (v2 +v1)]n (2)

For the other particle p2, the spring force is taken as−fs. We take
the total external forces as f = fs+ fd to be used in PBD framework.
Note that in Equations 1 and 2 additional bending of a spring is not
represented; that is, spring bones move in a linear trajectory with
only affine transformations. However, bending phenomena emerge
when using spring chains, where parent-child relationships allow
the chain to bend. This occurs because child bones inherit both the
rotations of their ancestors and their own rotations, which are in-
ferred after the free masses are relocated via simulation.

Algorithm 1 takes all the mass positions X in a rig and updates
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Algorithm 1 PBD-based Simulation

Require: X : {xi ∈ R3}
1: for all particles i do
2: if mi is 0: continue
3: vi← vi +∆twifi
4: vi← dsvi
5: end for
6: forall particles i do pi← xi +∆tvi
7: if stretch_constraints
8: p̃i← projectStretchConstraints(p1, ...,pN )
9: endif

10: for all particles i do
11: vi← (p̃i−xi)
12: xi← p̃i
13: end for

the free mass locations for a single iteration with time step ∆t. In
line 2, we skip the simulation if a particle is fixed in the system, i.e.
its mass is zero. In line 4, parallel to PBD algorithm, we provide
parameter ds to further damp the particle velocities v← dsv that is
a parameter for 3D artist to adjust for desired effects. In our experi-
ments, we used velocity damping in range 0 < ds < 1 for plausible
dynamics.

Note that the external forces can include gravity and other con-
tact forces. However, in our experiments we typically omit gravita-
tional acceleration and contact forces, focusing solely on the effects
of spring forces. For instance in Figure 3, lower stiffness ks causes
slower motion whereas higher stiffness abruptly vibrates the spring
bone and returns faster to rest length in a stable system.

ks = 10

ks = 300

Figure 3: Effect of spring stiffness on convergence behavior. In-
creasing spring stiffness ks leads to faster convergence toward the
rest length.

Since we limit our scope to spring forces and avoid other ex-
ternal forces, we skip the collision constraints in PBD algorithm.
Instead in lines 7− 9, we optionally provide stretching constraints
(see [BMOT13]), to project spring bones back to their original
length after the initial velocity and particle update. The constraints
in line 8 are projected as p̃i ← pi +∆pi where ∆pi is the correc-
tion vector. For a single spring, we use stretching correction vec-
tors ∆p1 and ∆p2 as described in [BMOT13]. In our experiments,

we typically perform a single iteration to optionally project stretch
constraints.

Let p be the mass positions are updated with explicit Euler in-
tegration. Following PBD algorithm, the first set of constraints are
projected as p← p+∆p where ∆p is the correction vector in line 8.
For each particle at pi connected to p j with a spring, the correction
vector is defined as:

∆pi =
wi

wi +w j
(
∥∥pi,j

∥∥− l0)
pi,j∥∥pi,j

∥∥ (3)

Despite PBD framework being unconditionally stable, project-
ing stretching constraints often does not produce plausible jiggling
bones. To improve the resulting dynamics, we further project con-
straints after a PBD-based simulation that is explained in Section
3.2.

(a) (b) (c)

Figure 4: Effects of constraints on Monstera plant rig motion. Blue
represents spring bones. A rigid white bone is rotated side by side
to jiggle the bones. (a) Stretch constraint causes a circular motion.
(b) Our kinematic constraints projected inside PBD framework re-
sult in vibrations and fail to produce smooth jiggling motion. (c)
Kinematic constraints projected outside of PBD framework pro-
duce more plausible jiggling.

3.2. Kinematic Constraints

Once our simulator in Algorithm 1 updates the free mass locations,
the connections between a bone tail and its children bone heads
are broken since fixed masses are not simulated (step 4 in Figure
5). Hence, to ensure bone connectivity, we project additional con-
straints based on the rig’s kinematic tree.

When our kinematic constraints are projected inside a classical
PBD framework, they result in abrupt vibrations (Figure 4b). In
contrast, when applied after the simulation loop, these constraints
produce more plausible jiggling effects (Figure 4c). Furthermore,
using only the stretch constraint results in an extra circular motion
that might not be desirable (Figure 4a). Therefore, we provide ad-
ditional user option fixed_scale to preserve rest bone lengths
after simulation. Projecting these constraints after the PBD-based
simulation avoids unintuitive vibrations and results in smoother rig
dynamics.

The steps we follow to restore bone connectivity and rest bone
lengths are illustrated in Figure 5. In Steps 1-4 the rig is posed with
forward kinematics and mass-spring systems are simulated. From
Step 4 to 5, if the user enables fixed_scale option, the spring
bone is scaled back to its rest pose length (Algorithm 2 lines 2−6).
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Then, the descendant bones are translated to their rest pose orien-
tations (Algorithm 2 lines 7−11); i.e. if they were fully connected
the children bones are moved to their parent’s tail, or if they were
unconnected, they are moved with an offset (line 9).

Algorithm 2 Kinematic Constraints

Require: B0,KB,B
1: for all bones i do
2: if fixed_scale then
3: l = ∥B1i−B2i∥
4: d = (B1i−B2i)/l
5: B2i← (l− l0)d
6: end if
7: for all children j ∈ KB(i) do
8: B j = B2 j−B1 j
9: B1 j← B2i + t j

10: B2 j← B1 j +B j
11: end for
12: end for

In Algorithm 2, B0 is the rest bone locations and Bi = (B1i,B2i)
is the bone at index i with its head and tail located B1i,B2i ∈ R3

respectively. KB is the kinematic relations KB : {(Bi,B j)} where in
every tuple Bi is the parent bone of B j. Lastly, B denotes the bones
in the posed space. In our case, B is the bone orientations after the
simulation.

Figure 5: Steps to preserve rest bone lengths and connectivity in
a toy case. First box is the rest pose. User applied rotation rotates
the bone chain through forward kinematics in the dotted box. Last
box is the dynamically posed bone chain where original length and
connectivity are preserved.

3.3. Skinning Transformations

In skinning, underlying bone transformations determine the mesh
deformation. Once we simulate the spring bones, we need to in-
fer the necessary bone transformations that are given to skinning.
In this work, we adopt the most widely used skinning method,
linear blend skinning (LBS), as our underlying skinning method.
Let v0

j ∈ R4×1 be rest pose vertex in homogeneous coordinates,
Mi ∈ R4x4 be the bone i’s transformation matrix and wi j be the

(a) (b) (c) (d)

Figure 6: Comparison of simulation constraints on skinning de-
formation. (a) Unconstrained. (b) Only stretch constraints. (c) Our
constraints. (d) Rigid LBS.

binding weight between bone i and vertex j. Deformed vertex lo-
cation v j in homogeneous coordinates can be defined as:

v j =
N

∑
i=0

wi jMiv
0
j (4)

Figure 7: The procedure to compute chained affine transforma-
tions. Rest pose bone (source) and posed bone (target) is given
in the first box. Our goal is to find a transformation M that maps
source line segment to target line segment. At the last box the source
line segment is aligned with the target segment after Rotate-Scale-
Translate affine transformations are applied.

In traditional skinning pipelines, bone transformations Mi are
directly computed via underlying kinematics, either by forward or
inverse kinematics, after the user poses the skeleton bones. In our
case, the user input transforms are altered once the spring bones are
simulated. Therefore, our problem is to find a new transformation
M∗

i : B0
i → BD

i to pose the rest pose bones into their dynamically
posed locations.

To compute the dynamic bone transformations, we decompose a
matrix M∗

i into its individual affine transformations: Rotate, Scale,
Translate (RST). In Figure 7 steps to find affine transformations
are illustrated. In the end, necessary transformation matrices Mi of
each bone i are computed for Equation 4. Intermediate steps of the
computation are provided in Appendix A.

3.4. Implementation

Our method takes traditional skinning input: a surface polygonal
mesh, a rig, and keyframe poses of the rig. Given the keyframe
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(a) (b) (c) (d)

Figure 8: Comparison of different bone transformations. (a) SVD-
based Least-Squares Rigid Motion [SHR17] is used to map rest
pose to dynamic pose. Note that this algorithm requires at least 3
points to produce the optimal rigid motion; therefore, we used bone
endpoints as well as its midpoint to match 3 points of a rest pose
bone to a dynamically posed bone. (b) Only bone tail translations
are fed in the skinning. Notice that this approach can be plausible
for irregular shapes (top) but fails to produce smooth deformation
for a flat surface (bottom). (c) Our proposed RST transformation.
(d) Rigid LBS.

poses, we use linear interpolation to obtain the corresponding rig
pose at each frame. The user decides which bones are spring bones
and specifies their mass-spring parameters. Alternatively, similar
to [MK16], we also use helper bones to extend the primary rig to
simulate local dynamics. Computationally, these helper bones are
treated as regular bones, differing only in their artist-determined
rest pose orientations.

Following the concept of orthogonal forces represented in Com-
plementary Dynamics [ZBLJ20], the helper spring bones are de-
signed to complement the existing rigid rig. To this end, most helper
bones are placed nearly orthogonal to the bones responsible for pri-
mary motion.

Algorithm 3 Overall flow of our pipeline

Require: V 0, W , B0, KB, θ, D, γ

1: initialize_simulator(B0, D, γ)
2: for all frames t do
3: θ

t ← θ(t)
4: BR,MR← forward_kinematics(B0, KB, θ

t )
5: B∗← simulate(BR)
6: BD← kinematic_constraints(B∗, KB)
7: MD← get_bone_transforms(BD)
8: M← compose_transforms(MD, MR, D)
9: V ← skinning(V 0, W , M)

10: end for

In Algorithm 3, spring bone indices D and parent-bone relations
KB, mass-spring parameters γ : (ks,kd ,ds,m) are given by the user
together with rest shape V 0, binding weights W , rest pose bones
B0 and the animation keyframes θ at the initialization stage. In line
3, the bone poses θ

t for the current frame is taken and fed into

forward kinematics in line 4. After simulating and projecting kine-
matic constraints, we compute RST transformations in line 7. Once
we obtain dynamic bone transformations, in line 8 we construct
final bone transformations to be fed into the underlying skinning
method. We keep the bone transformations MR obtained in forward
kinematics for rigid bones and update bone transformations with
MD only for spring bones. In the end, after the initial rig and mass-
spring parameters setup, our pipeline automatically computes the
dynamic bone orientations BD and vertex locations V .

4. Results

Spring bones achieve plausible dynamic motion over a diverse set
of subjects, including rigid bodies, elastic bodies, soft tissues, and
garment animation. For instance, a plant pot is a composition of
rigid bodies. Under the motion, the plant leaves can rotate and
translate; however, scaling is not allowed. To achieve such dynam-
ics, we simulate the bones attached to leaves with spring bones
under our fixed_scale option to preserve the original bone
lengths.

Figure 9: Skinning of a shaking Monstera plant pot. Top: LBS de-
formation. White bones indicate rigid bones. Middle: Our dynamic
deformation achieved with spring bones colored as blue. Single
rigid white bone is left on the root that is responsible for shak-
ing the pot. Bottom: Our deformation. Notice that the leaves are
shaking side to side whereas the pot remains rigid. This is achieved
via weight painting the pot area with 1.0 weights for the rigid root
node.

Note that for the plant, duck, and cloth animations in Figures 9,
10, and 11, only the root bone is rotated by the user. Due to the
forward kinematics, the same rotation is inherited by all of the de-
scendant bones. This single rotation produces a stiff motion in LBS
as expected. Given this input, our method automatically infers the
dynamic motion in a single shot. Regardless of the underlying geo-
metric skinning pipeline, our produced dynamics are cumbersome
to replicate manually because the 3D artist would have to keyframe
the rotations one by one for numerous frames. We generally use
similar stiffness and damping parameters for our main results. For
parameter details and to further inspect our secondary animation
contributions, please refer to the supplemental video.

We color-coded our results with the Euclidean distance differ-
ence between the rigid deformation vertices and our deformation.
Red regions indicate the largest Euclidean distance between LBS
and ours, while blue regions represent zero distance where the de-
formation exactly matches with LBS. Rest poses are given at the
left of the figure, where rigid bones are colored white and spring
bones are colored blue.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



8 of 14 B. Akyürek & Y. Sahillioğlu / Spring Decomposed Skinning

Figure 10: An elastic body example is demonstrated on the rubber
duck model rotated back and forth. Top: LBS. Middle: Ours. Bot-
tom: Ours color-coded in comparison to LBS. Our method achieves
smooth dynamic motion as if the rubber duck is floating on water
without simulating any contact forces.

Figure 11: SDS applied on a piece of cloth rotated back and forth.
Parallel chains of spring bones form an indented surface when the
garment is deformed.

4.1. Helper bones

Converting existing rig bones to spring bones allows the user to
impose global dynamics throughout the 3D character. Alternatively,
adding spring helper bones to the original rig allows imposing local
dynamics such as jiggling of fatty belly area, as a complementary
motion.

We test our method on the popular SMPL model for fat tissue jig-
gling [LMR∗23]. We use pose sequences provided in the DFAUST
dataset [BRPMB17] and obtain rigid deformation of these poses
with the SMPL. Then, we set up helper bones extending the SMPL
skeleton. Once our framework simulates the helper bones, we add
the simulated motion on SMPL deformation to achieve soft tis-
sue jiggling. (Figure 13-14). Unlike classical skinning, the SMPL
model is defined on blendshapes. Therefore, for SMPL demonstra-
tions we directly add the bone tail translations on the blendshaped
mesh between each current frame t and the previous frame t − 1
such that bone i transformation is given by BD

2i(t)−BD
2i(t− 1) for

t ∈ [1, ...,N] where N is the number of animation frames and the
first frame is taken as initial pose BD

2i(0) = B0
2i. We observe that the

bone tail translations are enough to produce plausible jiggling in
local areas; however, as seen in Figure 8, this approach can create
artifacts on large flat surfaces.

Helper bones are also handy for garment animation. We observe
that adding parallel spring chains can approximate cloth dynamics
as in Figure 11. A failure case is demonstrated in Figure 12 where
a single spring chain fails to approximate the cloth surface. Both
cloth rigs are bound to the cloth surface automatically with heat
diffusion [BP07] weights.

As an advantage, spring rigs enable more user control over the

cloth deformation, as opposed to traditional cloth simulation where
the user has limited control over the garment deformation. Tradi-
tionally, the user can control the material properties by changing
the mass and stiffness parameters; however, the computed result
highly depends on the physical simulation. In our pipeline, the user
has control over the physical simulation parameters (mass and stiff-
ness parameters), and the rig parameters (placement and binding
weights of primary or helper bones). These controls enable the user
to achieve versatile dynamics and improve the degrees of freedom.

Figure 12: SDS with a single spring chain fails to produce cloth
dynamics.

4.2. Comparison

We provide a comparison with Fast Complementary Dynamics
by Benchekroun et al. [BZC∗23] in Figure 18. We also com-
pare our results with a recent paper by Wu and Umetani [WU23]
which provides a framework for controllable skinning dynamics.
In their work, Wu and Umetani simulate a tetrahedral mesh us-
ing Position Based Dynamics (PBD) constrained in a complemen-
tary subspace, inspired by Zhang et al.’s Complementary Dynam-
ics [ZBLJ20]. Then, they infer the dynamic handle locations with
inverse kinematics. Similar to our approach, Wu and Umetani aim
to unify physical simulation with the skinning pipeline. However,
their method is complementary to ours: they first simulate the mesh
and then infer the handle locations, whereas we first simulate the
rig and subsequently infer dynamically deformed vertices based on
simulated bone transformations.

In Figures 15 and 16, user input is applied to the yellow handles
in LBS, and the same input is given to all the skinning methods.
Green points indicate the free handles whose dynamic locations
are computed via inverse kinematics and red points are the fixed
handles in Wu and Umetani’s method. In our case, we use blue
spring bones, particularly to simulate ears and trunk in Figure 16.

Note that for the comparisons with [WU23], deformation is
based on point handles. On the other hand, classical skinning ap-
plications feature a skeleton hierarchy. Our RST algorithm is de-
signed for the skeleton bones, assuming the bones have a positive
length. Therefore, in these comparisons, we only use translations
of the point handles for the skinning transformations. We observe
that translations can be sufficient in local dynamics of non-flat sur-
faces as also demonstrated on SMPL in Figure 13. We convert
these point handles to point spring bones, creating a zero-length
spring (Figure 2). Comparison in Figure 15 demonstrates how the
point spring handles result in a global secondary motion. Addi-
tional spring helper bones are required for localized soft tissue jig-
gling, e.g. around the elephant ears and trunk in Figure 16.

Simulating the tetrahedral mesh can introduce an unpredictable

© 2025 Eurographics - The European Association
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B. Akyürek & Y. Sahillioğlu / Spring Decomposed Skinning 9 of 14

Figure 13: Helper spring bones (blue bones) are used as an addition to primary bones to simulate fat tissue dynamics. Top: animation with
SMPL blendshapes. Bottom: our simulated bones’ motion is added on top of blendshapes deformation.

Figure 14: The same helper spring bones in Figure 13 are used to simulate fat tissue dynamics for a different animation sequence. Top:
animation with SMPL blendshapes. Bottom: our simulated bones’ motion is added on top of blendshapes deformation. Color coding indicate
the highest to lowest change in vertex Euclidean distances with respect to top row.

motion on the mesh (Figure 15). In comparison, our method re-
mains controllable as it does not depend on the mesh vertices. Fur-
thermore, inspired by Complementary Dynamics [ZBLJ20], Wu
and Umetani (2023) introduce a complementary motion that is or-
thogonal to the rigid motion. However, the resulting motion might
not match the desired dynamics. For instance, in Figure 15, Spot
the cow rocks back and forth; however, the complementary motion
produces a side-to-side rotation of the cow’s head, resulting in an
entirely different motion. In comparison, our point springs enhance
the rocking motion by exaggerating the movement in the same di-
rection.

Another problem with Wu and Umetani’s tetrahedral simula-
tion arises when detailed rigs are used (Figure 16, second and
fifth row). In volumetric simulation, collapsing skinning artifacts
often appear as cracks between neighboring tetrahedra. With de-
tailed rigs, these artifacts become more frequent around closely po-
sitioned bones, resulting in self-intersections and rapid volume loss
across multiple springs. Under a time-stepping scheme, this condi-

tion can cause abrupt changes in spring forces around the neighbor-
hood and ultimately amplify spring forces. In Wu and Umetani’s
framework, PBD simulation and inverse kinematics have a feed-
back loop, prone to severe instabilities under these conditions. Ad-
ditionally, detailed rig input increases stiffness in complementary
dynamics (Figure 18, which contradicts the intuition of deforma-
tion control through rigging. Since our method is based on rig sim-
ulation, our dynamics remain mostly independent from mesh res-
olution and controllable through handles. Lastly, tetrahedralization
is not a trivial task to apply on existing animation as it requires
the re-assembly of binding weights and texture, prone to excessive
manual labor. As an advantage, our method allows working on shell
meshes that can be easily adopted on existing rigged characters. In
short, spring bones avoid the disadvantages of tetrahedral simula-
tion and remain controllable and scalable for different mesh and rig
resolutions.

© 2025 Eurographics - The European Association
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LBS

[WU23]

Ours

(a)

(b)

(c)

Figure 15: Comparison for rocking motion. (a) LBS. (b) In
[WU23], the fixed handles (red dots in the second row) are intended
to limit the PBD simulation on the bounded vertices. Despite all
the handles are being fixed and the leg handles are not moved dur-
ing the animation, notice that the cow legs are still affected by the
tetrahedral mesh simulation (detail box), which reduces user con-
trollability over the animation. (c) Spring bones used in primary
handles result in global stretch and squash dynamics.

4.3. Timing

Similar to LBS, our time complexity primarily depends on the num-
ber of bones in the rig rather than the number of vertices. For exam-
ple, deformation on the Duck model is faster than Cloth and Mon-
stera models (Table 1) despite having a significantly larger number
of vertices, due to having fewer rig bones. Note that in Table 1,
SMPL deformation is faster because its demonstration does not in-
clude skinning computations, i.e. simulated bone tail translations
are directly added on top of blendshapes. For the rest of the models
in Table 1, we use our RST algorithm to compute bone transforma-
tions.

Our method is approximately 10 times faster than [WU23] as our
implementation mainly depends on the number of rig bones and
avoids simulating the tetrahedral mesh vertices. For comparison,
we also use additional helper bones for all the models in Table 2,
doubling the number of total bones.

Experiments were conducted on a 2.5 GHz Quad-Core Intel Core
i7 processor with 16 GB of RAM. For both our results and [WU23]

Figure 16: Comparison with a helper bone rig. Top 3 rows show
how the rig moves during the animation and bottom 3 rows are
their final mesh rendering results of LBS, Wu and Umetani (2023),
and ours respectively. Rest poses are given on the left side.

comparisons we use Python 3.9.18. Furthermore, our implementa-
tion is dependent on NumPy 1.26.4 while Wu and Umetani’s im-
plementation is dependent on Taichi 1.7.1.

Model |V | |Bs|/|B| LBS (ms) Ours (ms)

Cloth 2025 22/23 5.26 12.21

Monstera 4971 23/24 6.19 14.11

Duck 12932 5/6 4.51 9.50

SMPL 8541 9/25 N/A 4.67

Table 1: Per-frame average timings. |V | is the number of mesh ver-
tices. |Bs| is the number of spring bones and |B| is the total number
of bones in the rig. Note that SMPL model is based on blendshapes
skinning, so that LBS is omitted from the table. The time required
for rendering is not included.

5. Discussions

5.1. Methods in the Industry

Industrial methods use jiggle bones to simulate secondary motions,
specifically focused on animal tails, ponytail hair, or muscle jig-
gling. [Wan23] constrain the spring motion within a cone, creating
a controlled range for muscle jiggling. Unreal Engine also provides
dynamic bones similar to those described by [Wan23].

To the best of our knowledge, existing applications do not con-
sider bone scaling. In contrast, we also provide the option to scale
the bones which enables secondary motion globally such as squash
or stretch, similar to Velocity Skinning, as shown in Figure 15.

© 2025 Eurographics - The European Association
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(a) (b) (c) (d)

Figure 17: In LBS rigs, yellow handles are translated throughout the animation, dark blue handles are our spring bones simulated during
the animation. (a) LBS. (b) Ours. Spring bones used as primary bones impose global dynamics such as floppy and squashy deformation. (c)
LBS with helper bones around ears and trunk. (d) Ours with helper bones. Spring bone chains in helper bones impose local dynamics.

(a) (b) (c)

Figure 18: Comparison with Fast Complementary Dynamics [BZC∗23] (a) with a single handle (b) with a full rig (light blue bones). (c)
Ours with a full rig where spring bones are colored blue. Notice that adding a detailed rig in [BZC∗23] severely reduces dynamics in the
duck body attached to multiple bones, with secondary motion concentrated in the bottom plate attached to a single bone. Our method controls
secondary motion via handles, i.e. keeping the bottom plate rigid through a single rigid bone, while the rest of the duck moves dynamically
following the spring bones (see supplemental video).

Model |Vtet | |B| LBS (ms) Ours (ms) [WU23] (ms)

Spot
837 8 1.15 1.98 20.73
837 15 1.86 3.45 27.10

Spot (HQ)
1762 8 1.29 2.40 22.97
1762 15 2.13 4.05 31.23

Elephant
8541 25 4.14 7.87 90.41
8541 47 6.16 11.91 114.79

Table 2: Timing measurements of comparison with volumetric
mesh input in milliseconds. Note that the time required for ren-
dering is not included. |Vtet | denotes the tetrahedral vertex count.
|B| is the number of bones in the rig. Timings are averaged over
500 frames. For consistency, all bones are taken as spring bones in
ours, and fixed bones in Wu and Umetani’s method.

The introduction of free and fixed masses and their kinematic con-
straints allows us to define scaling or optionally preserve original
bone lengths.

On top of semi-implicit Euler method which results in similar
motion in industrial applications, we utilize PBD with optional con-
straints, which becomes useful for capturing localized dynamics
such as belly fat jiggle in Figures 13 and 14. Overall this frame-
work allows us to define local and global secondary dynamics that
generalize to a broad range of applications.

While tools like Unity and Blender also offer cloth dynamics for

mass-spring simulation, these typically operate as classical simula-
tions applied directly to mesh vertices. In contrast, our work intro-
duces a skinning-based framework that generalizes secondary mo-
tion by representing dynamic mesh deformation as a linear combi-
nation of a small set of springs, rather than simulating each vertex
independently.

Although it is possible to create jiggle-bone effects in exist-
ing tools by assigning parent-child relationships to vertex groups,
Spring Decomposed Skinning formalizes this process into a uni-
fied framework, providing a groundwork for future enhancements
to secondary motion systems.

5.2. Creative Workflow

Our proposed framework is designed to be easily integrated into ex-
isting skinning pipelines and can be rapidly applied within common
3D animation software. In particular, a rigged animation sequence
created in software such as Blender can be exported into our frame-
work. Once the user selects the spring bones and sets the simulation
parameters, they can achieve dynamic deformation in a plug-and-
play fashion. Parameter settings shown in the supplemental video
are largely consistent across different models.

If necessary, users can add helper bones to drive local secondary
motion. While this requires recomputation of binding weights, in
most cases, automatic methods for vertex-bone binding are suf-
ficient. Minimal weight painting may be needed to impose rigid
material constraints, for instance, binding the pot of a plant to a
rigid bone (Figure 9), or the bottom plate of the duck (Figure 18).
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The presented results are primarily bounded by automatic heat dif-
fusion weights. In specific models, including plant pot and duck,
minimal weight painting is applied to control rigid material behav-
ior; however, we avoid extensive weight painting and primarily rely
on automatic weight computations to provide fast prototyping.

5.3. Limitations and Future Work

So far we have studied Hookean spring bones for their sinusoidal
nature and simplicity. While the results are promising, our sys-
tem inherits the primary limitations of Hookean spring forces. In
[MHTG05], limitations of mass-spring systems are discussed. Es-
sentially, mass-spring systems are sensitive to chosen parameters
and incorrect parameter settings can cause instability. Even with an
unconditionally stable framework such as PBD, exploding forces
still exist. This is also because our system is position-based, rather
than force-based. That is, the user directly determines the bone po-
sitions instead of applying forces that influence them. Therefore,
the force required to move the rig from one orientation to another
can explode depending on the system parameters. In future work,
more robust spring systems could be explored to improve stability.

Our spring bones are limited to 3 Degrees of Freedom (DoF).
Specifically, the springs are translated along the x, y, and z axes in
3D space without twisting or bending. To allow a larger DoF and
achieve twisting motion, angular velocities can also be considered
as in [GBFP11].

In our RST algorithm, we directly use matrices to rotate the vec-
tors; however, for DQS and other skinning methods, a quaternion-
based rotation can be employed to mitigate the potential volume
collapse of rotation matrices. Furthermore, the scope of our pro-
posed RST algorithm can be further studied to evaluate its effec-
tiveness.

We also observe that longer helper bone chains are more difficult
to control and tune for desirable secondary motion. This is also be-
cause self-intersections can occur without collision detection. We
leave collision detection and integrating other external forces as fu-
ture work. Finally, we manually set up simulation parameters to
achieve the desired secondary animation. Although the parameters
are often shared across different examples, automating the SDS
framework is also an open area of research.

6. Conclusion

Spring Decomposed Skinning proposes a simple yet effective
framework to emulate a real-time and diverse range of secondary
animation on existing geometric skinning pipelines. The scope of
SDS dynamics covers a wide range, including secondary motion
on rigid bodies, elastic bodies, soft tissues, and garment animation.
Unlike the common FEM-based approaches, SDS does not require
mesh tetrahedralization which significantly improves time com-
plexity and is easy to integrate with existing animation pipelines.

Furthermore, SDS directly simulates the bones, providing artis-
tic control over the physical deformation. With this approach, as
opposed to volumetric mesh simulations directly simulating mesh
vertices, SDS aligns with the core intuition behind skinning by de-
composing the complex surface dynamics into a linear combination

of simple spring motions. Ultimately, SDS shows a promising di-
rection to achieve real-time, controllable, and versatile dynamics.
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Appendix A: Computation of RST

Initially, we take both rest pose bone and deformed pose bone line
segments to their bone space where their head is at the origin. At
the precomputation stage, for every bone i an offset matrix Bo =[

I −B0
1i

0 1

]
and its inverse B−1

o =

[
I B0

1i
0 1

]
is stored where I ∈

R3×3 is the identity matrix.

Then, both the rest pose bone i and simulated bone i is translated
to bone space by offset Bo (step 1 in Figure 7). In the bone space,
the amount of translation matrix T for RST matrix is saved as:

t∗i = BD
1i−B0

1i (5) T =

[
I t∗i
0 1

]
(6)

and the target bone is translated to origin such that its tail loca-
tion is computed as BD′

2i and in bone space, the rest bone’s tail is
located at B0′

2i :

BD′

2i = BD
2i−B0

1i− t∗i (7) B0′
2i = B0

2i−B0
1i (8)

At this point, our problem is to find the rotation transformation
to align R : B0′

2i → BD′

2i . Let θ be the angle between two normalized
vectors p,q ∈ R3 where ∥p∥ = ∥q∥ = 1, then c = cosθ = p ·q and
s = sinθ = ∥p×q∥. Let the rotation be around axis r = [rx,ry,rz]
where r = p× q/∥p×q∥ and let κ = 1− c. Rotation matrix R∗

that aligns q to p can be computed by Rodrigues’ formula in matrix
form:

R∗ =

 κr2
x + c κrxry− rzs κrxrz + rys

κrxry + rzs κr2
y + c κryrz− rxs

κrxrz− rys κryrz + rxs κr2
z + c

 (9)

R =

[
R∗ 0
0 1

]
(10)

We also know spring simulation scales the spring bones. To
match the scaling between rest pose bone (source) and dynami-
cally posed bone (target), we rotate the rest bone’s tail by applying
rotation matrix R to the rest bone tail B0′

2i . The scaling between two
aligned vectors is given by:
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s =

∥∥∥BD′

2i

∥∥∥∥∥R∗B0′
2i

∥∥ (11)
S =

[
sI 0
0 1

]
(12)

We combine these Rotate, Scale, Translate (RST) transformation
matrices in Equations 10, 12, and 6 in

M∗ = TSR (13)

Lastly, we transform the bones from bone space to world space
back. The overall affine transformations can be chained into a sin-
gle transformation as:

MD
i = B−1

o M∗Bo (14)

that is used to transform the rest pose bone to its posed space
inside the underlying skinning method. In our experiments we use
dynamic bone transformations MD

i for transformation matrices Mi
in Equation 4.
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[SY10] SAHILLIOĞLU Y., YEMEZ Y.: Coarse-to-fine surface reconstruc-
tion from silhouettes and range data using mesh deformation. Computer
Vision and Image Understanding 114, 3 (2010), 334–348. 3

[SZT∗08] SHI X., ZHOU K., TONG Y., DESBRUN M., BAO H., GUO
B.: Example-based dynamic skinning in real time. ACM Transactions
on Graphics (TOG) 27, 3 (2008), 1–8. 2

[TN19] TOOTHMAN N., NEFF M.: Spring rigs for skinning. In Proceed-
ings of the 12th ACM SIGGRAPH Conference on Motion, Interaction
and Games (2019), pp. 1–10. 3

[TRPO21] TAPIA J., ROMERO C., PÉREZ J., OTADUY M. A.: Para-
metric skeletons with reduced soft-tissue deformations. In Computer
Graphics Forum (2021), vol. 40, Wiley Online Library, pp. 34–46. 3

[TT93] TURNER R., THALMANN D.: The elastic surface layer model for
animated character construction. In Communicating with virtual worlds
(1993), Springer, pp. 399–412. 3

[vFTS07] VON FUNCK W., THEISEL H., SEIDEL H.-P.: Elastic sec-
ondary deformations by vector field integration. In ACM International
Conference Proceeding Series (2007), vol. 257 of SGP ’07, pp. 99–108.
3

[Wan23] WANG T.: Joint-based skin deformation in god of war ragnarök,
2023. Game Developers Conference. 3, 10

[WB01] WITKIN A., BARAFF D.: Physically based modeling. In ACM
SIGGRAPH 2001 Courses (2001). 2

[WLP∗17] WILLETT N. S., LI W., POPOVIĆ J., BERTHOUZOZ F.,
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